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Setup

We consider a system consisting of a large number of identical subsystems (“parti-
cles”).

N number of particles

m number of states for each particle

mN number of microstates

Ni (i = 1, ..., m) occupation number

{Ni}i=1,...,m distribution

Y ({Ni}) realization number

S = klnY ({Ni}) entropy



Assumptions

1) Possible processes

• Two-particle interaction (“collision”):1 ij → kl

• (Free motion: i → k, where i and k only differ in the position of the particle. We
will not include this.)2

2) Stoßzahlansatz

Number of collisions of type ij → kl during unit time:

nij→kl ≈ Wkl
ij NiNj

(
Wkl

ij ≥ 0
)

1The order of state indices doesn’t matter: for example, 12 → 34 and 21 → 43 denote the same process.
2One approach is to say that the one-particle states i, j, k, l only incorporate the momentum degrees of freedom; and

the position degrees of freedom are taken care of separately. This is justified to the extent that we will be interested in
the entropy of the system and the entropy associated with the momentum and position degrees of freedom just add up.
More precisely, in case where the one-particle states are labeled by pairs of coarse-grained position and momentum indices,
i = (α, β), then Y ({Ni}) = Y ({Nα})Y

({
Nβ

})
and so S = klnY ({Nα}) + klnY

({
Nβ

})
= Sposition + Smomentum.



Assumptions

1) Possible processes

• Two-particle interaction (“collision”): ij → kl

• (Free motion: i → k, where i and k only differ in the position of the particle. We
will not include this.)

2) Stoßzahlansatz

Number of collisions of type ij → kl during unit time:

nij→kl ≈ Wkl
ij NiNj

(
Wkl

ij ≥ 0
)

3) Time reversal invariance + rotation symmetry + local interactions

Wkl
ij = W ij

kl



Illustration of Assumption 3

Suppose that states are (x, p)-s (position + momentum) coarse-grained into small
phase space cells.

Assume for simplicity that we are in 2D and consider the following transformations
of states:

• Time reversal:
T (x, p) = (x,−p)

• Spatial rotation by 180° about the origin of a given coordinate system:

R (x, p) = (−x,−p)

Their combination yields
RT (x, p) = (−x, p)



Illustration of Assumption 3

Assume that particles only collide if they are in the same spatial cell, and consider an
R whose axis goes through the spatial cell where a given collision ij → kl takes place,
such that x and −x fall into the same spatial cell, for the position x of each particle that
figures in the collision, both before and after the collision. Then we have

”RT (ij → kl) ” = RTk, RTl → RTi, RTj = kl → ij (1)

On the other hand, assume the interaction obeys the following symmetries:

• Time reversal invariance:
WTi,Tj

Tk,Tl = Wkl
ij (2)

• Rotation invariance:
WRk,Rl

Ri,Rj = Wkl
ij (3)

All in all, we have

W ij
kl

(1)
= WRTi,RTj

RTk,RTl
(2)&(3)
= Wkl

ij



Illustration of Assumption 3
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Assumptions

4) Energy conservation

• For any collision ij → kl:
Ei + Ej = Ek + El

• Since energy doesn’t change in processes, the total energy is conserved:

E = ∑
i

NiEi



Change of occupation numbers during unit time

∆Ni = ∑
pq,r ̸=i

npq→ir + 2∑
pq

npq→ii − ∑
pq,r ̸=i

nir→pq − 2∑
pq

nii→pq

= ∑
pq,r ̸=i

(
npq→ir − nir→pq

)
+ 2∑

pq

(
npq→ii − nii→pq

)
2.≈ ∑

pq,r ̸=i

(
W ir

pqNpNq − W pq
ir NiNr

)
+ 2∑

pq

(
W ii

pqNpNq − W pq
ii NiNi

)
3.
= ∑

pq,r ̸=i
W ir

pq
(

NpNq − NiNr
)
+ 2∑

pq
W ii

pq
(

NpNq − NiNi
)

Qualitative analysis:

• If Ni is large(r than typical occupation numbers), then ∆Ni < 0

• If Ni is small(er than typical occupation numbers), then ∆Ni > 0

Hence, “occupation numbers tend to equalize.”



A more precise analysis: change of entropy during unit time

S = klnY ({Ni}) = kln
N!

N1!...Nm!
= klnN! − ∑

i
klnNi!

Stirling
≈ kNlnN − k ∑

i
NilnNi︸ ︷︷ ︸

Boltzmann′s H function

∆S ≈ dS
dt

≈ −k∑
i

(
dNi

dt
lnNi + Ni

dlnNi

dNi

dNi

dt

)
= −k∑

i

dNi

dt
(lnNi + 1)

= −k∑
i

dNi

dt
lnNi − k∑

i

dNi

dt
= −k∑

i

dNi

dt
lnNi − k

dN
dt

= −k∑
i

dNi

dt
lnNi

≈ −k∑
i

∆NilnNi



A more precise analysis: change of entropy during unit time

∆S ≈ −k∑
r

∆NrlnNr

= −k ∑
ijkl

i≤j,k≤l

nij→kl
(
lnNk + lnNl − lnNi − lnNj

)
= −k ∑

ijkl
i≤j,k≤l

nij→klln
NkNl

NiNj

= −k ∑
ijkl

i≤j,k≤l,ij≤kl

(
nij→klln

NkNl

NiNj
+ nkl→ijln

NiNj

NkNl

)
2.≈ −k ∑

ijkl
i≤j,k≤l,ij≤kl

(
Wkl

ij NiNjln
NkNl

NiNj
+ W ij

kl NkNlln
NiNj

NkNl

)
3.
= −k ∑

ijkl
i≤j,k≤l,ij≤kl

Wkl
ij
(

NiNj − NkNl
)

ln
NkNl

NiNj

ij ≤ kl means i ≤ k, and j ≤ l if i = k, that is pairs of states are ordered lexicographically. For example, 12 ≤ 34 and 24 ≤ 33.



A more precise analysis: change of entropy during unit time

∆S ≈ −k ∑
ijkl

i≤i,k≤l,ij≤kl

Wkl
ij
(

NiNj − NkNl
)

ln
NkNl

NiNj

Each term in this sum is of the form

c (x − y) ln
y
x

with c ≤ 0, x, y > 0, thus:

• If x ≥ y, then x − y ≥ 0 and lny
x ≤ 0 and so c (x − y) lny

x ≥ 0

• If x ≤ y, then x − y ≤ 0 and lny
x ≥ 0 and so c (x − y) lny

x ≥ 0

Hence, each term in this sum ≥ 0 and so

∆S ≥ 0



Equilibrium distribution

dNi

dt
= 0 (i = 1, ..., m) ⇒ dS

dt
= 0

Since each term of

dS
dt

≈ −k ∑
ijkl

i≤i,k≤l,ij≤kl

Wkl
ij
(

NiNj − NkNl
)

ln
NkNl

NiNj

is non-negative individually, equilibrium entails

NiNj = NkNl

if Wkl
ij ̸= 0.3

3This means that in equilibrium, for all ijkl we have: nij→kl = nkl→ij



Distribution of maximum entropy (the most “homogeneous” distribution)

S ≈ kNlnN − k∑
i

NilnNi → max in {Ni}

under the constraints

∑
i

Ni = N

∑
i

NiEi = E



Interlude: method of Lagrange multipliers for constrained optimization

f (x1, ..., xn) → max

under the constraints

g1 (x1, ..., xn) = c1
...

gM (x1, ..., xn) = cM



Interlude: method of Lagrange multipliers for constrained optimization

Introduce the following so-called Lagrange function:

L (x1, ..., xn, λ1, ..., λM) := f (x1, ..., xn)− ∑
k

λk (gk (x1, ..., xn)− ck)

with added variables λ1, ..., λM, so-called Lagrange multipliers.

Necessary condition for maximizing f under the given constraints:

∂L (x1, ..., xn, λ1, ..., λM)

∂xi
=

∂ f (x1, ..., xn)

∂xi
− ∑

k
λk

∂gk (x1, ..., xn)

∂xi
= 0 (i = 1, ..., n)

gk (x1, ..., xn) = ck (k = 1, ..., M)

yielding n + M equations for the n + M unknowns x1, ..., xn, λ1, ..., λM.



Interlude: meaning of the Lagrange multipliers

Let x∗
1 (c) , ..., x∗

n (c) , λ∗
1 (c) , ..., λ∗

M (c) be the solution of the above equations, regarded
as a function of the parameters c := (c1, ..., cM), and introduce

f ∗ (c) := f (x∗
1 (c) , ..., x∗

n (c))

the maximal value of f as a function of the parameters c1, ..., cM. Then

λ∗
i (c) =

∂ f ∗ (c)
∂ci

Proof.

∂ f ∗ (c)
∂ci

= ∑
j

∂ f
∂xj

(x∗1 (c) , ..., x∗n (c))
∂x∗j
∂ci

(c)
∂L
∂xj

=0

= ∑
j

(
∑
k

λk (c)
∂gk
∂xj

(x∗1 (c) , ..., x∗n (c))

)
∂x∗j
∂ci

(c)

= ∑
k

λk (c)

(
∑

j

∂gk
∂xj

(x∗1 (c) , ..., x∗n (c))
∂x∗j
∂ci

(c)

)

= ∑
k

λk (c)
∂gk (x∗1 (c) , ..., x∗n (c))

∂ci

gk=ck
= λi (c)



Distribution of maximum entropy (the most “homogeneous” distribution)

S ≈ kNlnN − k∑
i

NilnNi → max in {Ni}

under the constraints

∑
i

Ni = N

∑
i

NiEi = E

If the Ni-s are large enough, we can consider them as continuous variables, and apply
the method of Lagrange multipliers.



Distribution of maximum entropy (the most “homogeneous” distribution)

Lagrange function:

L (N1, ..., Nm, α, β) = kNlnN − k∑
i

NilnNi − α

(
∑

i
Ni − N

)
− β

(
∑

i
NiEi − E

)

Necessary condition for maximum entropy under the given constraints:

∂L (N1, ..., Nm, α, β)

∂Ni
= −k (lnNi + 1)− α − βEi = 0 (i = 1, ..., m)

∑
i

Ni = N

∑
i

NiEi = E

yielding m + 2 equations for the m + 2 unknowns N1, ..., Nm, α, β.



Distribution of maximum entropy (the most “homogeneous” distribution)

The solution is the Maxwell–Boltzmann distribution:

N∗
i =

Ne−
β∗Ei

k

Z

with Z (N, E) = ∑
j
e−

β∗Ej
k , and β∗ (N, E) = ∂S∗(N,E)

∂E due the meaning of Lagrange mul-

tipliers.

This is an equilibrium distribution since it satisfies

NiNj = NkNl

if Wkl
ij ̸= 0, given that

Ei + Ej = Ek + El

due to energy conservation.



Equilibrium distribution

Conversely, any equilibrium distribution of the form

Ni = f (Ei)

must be the Maxwell–Boltzmann distribution.

Proof. We have

f (Ei) f
(
Ej
)
= f (Ek) f (El)

Ei + Ej = Ek + El

Ej = 0 yields

f (Ei) = f (Ek + El) =
f (Ek) f (El)

f (0)
which is the form

f (x + y) = a f (x) f (y)
Assuming that x and y can take any real value, differentiate this with respect to y and take y = 0:

f ′ (x) = a f (x) f ′ (0) = b f (x)

The only solution of this differential equation is an exponential function f (x) = Aebx, with Ni = f (Ei)
subjected to the same constraints ∑

i
Ni = N and ∑

i
NiEi = E as the Maxwell–Boltzmann distribution.



Picture of time evolution

Maximum entropy:

S∗ (N, E) = klnY ({N∗
i }) ≈ kNlnN − k∑

i
N∗

i lnN∗
i = kNlnZ (N, E) + β∗ (N, E) E



Subtle questions for consideration

• Is the Maxwell–Boltzmann distribution really the only equilibrium distribution?

• Does the system evolve into/approach the Maxwell–Boltzmann distribution?
(dS

dt ≥ 0 does not itself ensure this.)


